LECTURE 2

Atoms, Molecules and Ions

- 2.1 The Atomic Theories
- 2.2 The Structure of The Atom
- 2.3 Atomic Number, Mass Number and Isotopes
- 2.4 The Periodic Table
- 2.5 Molecules and Ions
- 2.6 Chemical Formula
- 2.7 Naming Compounds

THE EVOLUTION OF THE ATOMIC MODEL

Dalton's Atomic Theory

- 1. Elements are composed of extremely small particles called *atoms*. *Atoms* of the same element all have the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other element.
- 2. *Compounds* are composed of atoms of two or more elements. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
- 3. A *chemical reaction* involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.

Law of Definite Proportions

- Different samples of the same compound always contains its elements in a definite proportion by mass.

Law of Multiple Proportions

- In different compounds of the same elements, the various masses of one element that combine with a fixed mass of another element are related by small whole-number ratios.

Law of Conservation of Mass

- Matter is neither created nor destroyed

The Modern View of Atomic Structure

Atom- the basic unit of an element that can enter into chemical combination (extremely small and indivisible)

Three **subatomic particles** - electrons, protons, and neutrons.

- The cathode ray consist of negatively charged particles found in all matter

- Thomson together with Millikan concluded that the mass of an e - is exceedingly small (e - mass = 9.10×10^{-28} g).

Three types of rays produced by decay of radioactive substances such as "Uranium"..

(i) Alpha (α) rays .. positively charged particles (α) particles .. deflected by positively charged plate

(ii) Beta (β) rays .. electrons .. deflected by negatively charged plate

(iii) Gamma (γ) rays .. high-energy rays .. no charge and are not affected by an external field.

Thomson's Model

- a spherical atom composed of diffuse, positively charge matter, in which eembedded like "**raisin in a plum pudding**".

\rightarrow Rutherford's gold foil α -scattering experiment

Rutherford's Model of the Atom

- 1. atoms positive charge is concentrated in the nucleus
- 2. proton (p) has opposite (+) charge of electron (-)
- 3. mass of p is 1840 x mass of e $(1.67 \text{ x} 10^{-7} \text{ g})$

atomic radius ~ 100 pm = 1 x 10-10 m nuclear radius ~ 5 x 10-3 pm = 5 x 10-15 m

Chadwick's Experiment (1932)

neutron (n) is neutral (charge = 0) n mass ~ p mass = $1.67 \times 10^{-24} \text{ g}$
 TABLE 2.1
 Mass and Charge of Subatomic Particles

		Charge		
Particle	Mass (g)	Coulomb	Charge Unit	
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1	
Proton	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1	
Neutron	1.67493×10^{-24}	0	0	

*More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

mass $p \approx mass n \approx 1840 x mass e$

Atomic number, Mass number and Isotopes

Atomic number (Z) = number of protons in nucleus

Mass number (A) = number of protons + number of neutrons

= atomic number (Z) + number of neutrons

Isotopes are atoms of the same element (X) that have the same atomic number but different mass numbers

The Isotopes of Hydrogen

Isotope	Atomic Number	Number of protons	Number of Neutrons	Number of electrons	mass (amu)
Hydrogen-1	1	1	0	1	1
Hydrogen-2 (deuterium)	1	1	1	1	2
Hydrogen-3 (tritium)	1	1	2	1	3

How many protons, neutrons, and electrons are $in_{6}^{14}C$?

6 protons, 8 (14 - 6) neutrons, 6 electrons

How many protons, neutrons, and electrons are $in_{6}^{11}C$?

6 protons, 5 (11 - 6) neutrons, 6 electrons

Naturally occurring carbon consists of three isotopes, C, C, and C. State the number of protons, neutrons, and electrons in each of the following.

	¹² ₆	13 14 C C 6 6	
Proton	6	6	6
Neutron	6	7	8
Electron	6	6	6

In naturally occurring magnesium, there are three isotopes.

lsotopes of Mg						
Atomic symbol	$^{24}_{12}$ Mg	²⁵ ₁₂ Mg	²⁶ ₁₂ Mg			
Number of protons	12	12	12			
Number of electrons	12	12	12			
Mass number	24	25	26			
Number of neutrons	12	13	14			

²⁴ Ma	²⁵ Ma	²⁶ Ma
12	12	12

	T				The	M	ode	rn I	Peri	odio	e Ta	able	;				
1 IA																	18 8A
l H	Alka											13 3A	14 4A	15 5A	16 6A	17 7A	2 H
3	=: Ш											5 B	1	7 N	8 0	1	10
Ikali	arth	3 3B	4 4B	5 5B	6 6B	7 7B	8		10	11 1B	12 2B	13 Al		15 P	16 S	å	dob
M	Me	21 Sc	22 Ti	23 V	24	25	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	Grou	33 As	34 Se	Halo	e G
etal	stal	39 Y	40 Zr	41 Nb	Mo	Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	10 Sn	51 Sb	52 Te	ger	àas
5 3	10 Ha	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 16	83 Bi	84 Po	1	80 Ru
k7 Fr	Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(1 7)	118
			1														
	Metals			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Metall	oids		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	Nonm	atale					3154										

A *molecule* is an aggregate of two or more atoms in a definite arrangement held together by chemical forces

A *polyatomic molecule* contains more than two atoms

O₃, H₂O, NH₃, CH₄

An *ion* is an atom, or group of atoms, that has a net positive or negative charge.

cation - ion with a positive charge

If a neutral atom **loses** one or more electrons it becomes a cation.

A monatomic ion contains only one atom

A *polyatomic ion* contains more than one atom

$$OH^{-}, CN^{-}, NH_{4}^{+}, CO_{3}^{2-}, HCO_{3}^{-}, SO_{4}^{2-}, PO_{4}^{3-}, NO_{3}^{-}, NO_{2}^{-}$$

The names of common polyatomic anions

end in *ate*.
NO₃ nitrate PO₄³⁻ phosphate
with one oxygen less end in *ite*.
NO₂ nitrite PO₃³⁻ phosphite
with hydrogen attached use the prefix *hydrogen* (or *bi*).
HCO₃ hydrogen carbonate (bicarbonate)
HSO₃ hydrogen sulfite (bisulfite)

Common Ions Shown on the Periodic Table

How many protons and electrons are in ${}^{27}_{13}A1^{3+}$?

13 protons, 10 (13 - 3) electrons

How many protons and electrons are in $^{78}_{34}$ Se $^{2-}$?

34 protons, 36 (34 + 2) electrons

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H_2O	NH ₃	CH_4
Structural formula	н—н	Н—О—Н	H—N—H H	H H—C—H H
Ball-and-stick model				
Space-filling model			6	

Formulas and Models

A *molecular formula* shows the exact number of atoms of each element in the smallest unit of a substance

An *empirical formula* shows the simplest whole-number ratio of the atoms in a substance

<u>molecular</u>	<u>empirical</u>	
H ₂ O	H ₂ O	
$C_6H_{12}O_6$	CH ₂ O	
O ₃	Ο	
N_2H_4	NH ₂	

ionic compounds consist of a combination of cations and an anions

• The formula is usually the same as the empirical formula

• The sum of the charges on the cation(s) and anion(s) in each formula unit must equal zero

The ionic compound NaCl

The most reactive **metals** (green) and the most reactive **nonmetals** (blue) combine to form ionic compounds.

Formula of Ionic Compounds

Chemical Nomenclature

Ionic Compounds

- Most are binary compounds, some are ternary compounds
- Often a metal + nonmetal
- Anion (nonmetal), add "ide" to element name

$BaCl_2$	barium chloride
K ₂ O	potassium oxide
Mg(OH) ₂	magnesium hydroxide
KNO ₃	potassium nitrate

- Transition metal ionic compounds
 - indicate charge on metal with Roman numerals

+1	+2	+3	+4	+5	
(I)	(II)	(III)	(IV)	(V)	

- $FeCl_2$ 2 Cl^2 -2 so Fe is +2
- FeCl₃ 3 Cl⁻ -3 so Fe is +3

 Cr_2S_3 3 S⁻² -6 so Cr is +3 (6/2) chromium(III) sulfide

iron(II) chloride

iron(III) chloride

Element	Possible I	ons Name of Ion			
Chromium	Cr ²⁺	chromium(II)			
	Cr ³⁺	chromium(III)			
Copper	Cu ⁺	copper(I)			
	Cu ²⁺	copper(II)			
Gold	Au ⁺	gold(I)			
	Au ³⁺	gold(III)			
Iron	Fe ²⁺	iron(II)			
	Fe ³⁺	iron(III)			
Lead	Pb ²⁺	lead(II)			
	Pb ⁴⁺	lead(IV)			
FeCl ₂	iron(II) chl	oride			
FeCl ₃	iron(III) chloride				
Cu ₂ S	copper(I) sulfide				
CuCl ₂	copper(II) chloride				
SnCl ₂	tin(II) chloride				
PbBr ₄	lead(IV) bromide				

TABLE 2.2 The "

The "-ide" Nomenclature of Some Common Monatomic Anions According to Their Positions in the Periodic Table

Group 4A	Group 5A	Group 6A	Group 7A
C carbide $(C^{4-})^*$	N nitride (N ³⁻)	O oxide (O^{2^-})	F fluoride (F ⁻)
Si silicide (Si ⁴⁻)	P phosphide (P^{3-})	S sulfide (S ²⁻)	Cl chloride (Cl ⁻)
		Se selenide (Se ²⁻)	Br bromide (Br ⁻)
		Te telluride (Te ^{2–})	I iodide (I ⁻)

*The word "carbide" is also used for the anion $C_2^{2-}. \label{eq:carbide}$

Cation	Anion
aluminum (Al ³⁺)	bromide (Br ⁻)
ammonium (NH ₄)	carbonate (CO_3^{2-})
barium (Ba ²⁺)	chlorate (ClO_3^-)
cadmium (Cd ²⁺)	chloride (Cl ⁻)
calcium (Ca ²⁺)	chromate (CrO_4^{2-})
cesium (Cs ⁺)	cyanide (CN ⁻)
chromium(III) or chromic (Cr ³⁺)	dichromate ($Cr_2O_7^{2-}$)
cobalt(II) or cobaltous (Co ²⁺)	dihydrogen phosphate $(H_2PO_4^-)$
copper(I) or cuprous (Cu ⁺)	fluoride (F ⁻)
copper(II) or cupric (Cu ²⁺)	hydride (H ⁻)
hydrogen (H ⁺)	hydrogen carbonate or bicarbonate (HCO_3^-)
iron(II) or ferrous (Fe ²⁺)	hydrogen phosphate (HPO_4^{2-})
iron(III) or ferric (Fe ³⁺)	hydrogen sulfate or bisulfate (HSO_4^-)
lead(II) or plumbous (Pb ²⁺)	hydroxide (OH ⁻)
lithium (Li ⁺)	iodide (I ⁻)
magnesium (Mg ²⁺)	nitrate (NO_3^-)
manganese(II) or manganous (Mn ²⁺)	nitride (N^{3-})
mercury(I) or mercurous $(Hg_2^{2+})^*$	nitrite (NO_2^-)
mercury(II) or mercuric (Hg ²⁺)	oxide (O^{2-})
potassium (K ⁺)	permanganate (MnO ₄ ⁻)
rubidium (Rb ⁺)	peroxide $(O_2^{2^-})$
silver (Ag ⁺)	phosphate (PO_4^{3-})
sodium (Na ⁺)	sulfate (SO_4^{2-})
strontium (Sr ²⁺)	sulfide (S^{2-})
tin(II) or stannous (Sn ²⁺)	sulfite $(SO_3^{2^-})$
zinc (Zn^{2+})	thiocyanate (SCN ⁻)

TABLE 2.3 Names and Formulas of Some Common Inorganic Cations and Anions

*Mercury(I) exists as a pair as shown.

• Molecular compounds

- Nonmetals or nonmetals + metalloids
- Common names
 - H₂O, NH₃, CH₄,
- Element furthest to the left in a period and closest to the bottom of a group on periodic table is placed first in formula
- If more than one compound can be formed from the same elements, use prefixes to indicate number of each kind of atom
- Last element name ends in ide

TABLE 2.4

Greek Prefixes Used in Naming Molecular Compounds

Prefix	Meaning
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Molecular Compounds

- HI hydrogen iodide
- NF₃ nitrogen trifluoride
- SO₂ sulfur dioxide
- N₂Cl₄ dinitrogen tetrachloride
- NO₂ nitrogen dioxide
- N₂O dinitrogen monoxide

An *acid* can be defined as a substance that yields hydrogen ions (H^+) when dissolved in water.

For example: HCl gas and HCl in water

•Pure substance, hydrogen chloride

•Dissolved in water (H₃O⁺ and Cl⁻), hydrochloric acid

TABLE 2.5	Some Simple Acids	
Anion		Corresponding Acid
F ⁻ (fluoride)		HF (hydrofluoric acid)
Cl ⁻ (chloride	e)	HCl (hydrochloric acid)
Br ⁻ (bromid	e)	HBr (hydrobromic acid)
I ⁻ (iodide)		HI (hydroiodic acid)
CN ⁻ (cyanid	e)	HCN (hydrocyanic acid)
S ²⁻ (sulfide)		H ₂ S (hydrosulfuric acid)

An *oxoacid* is an acid that contains hydrogen, oxygen, and another element (the central element).

HNO ₃	nitric acid
HNO_2	nitrous acid
H_2SO_4	sulfuric acid
H_2SO_3	sulfurous acid
H_2CO_3	carbonic acid
H_3PO_4	phosphoric acid

Naming Oxoacids and Oxoanions

The rules for naming *oxoanions, anions of oxoacids,* are as follows:

- 1. When all the H ions are removed from the "-ic" acid, the anion's name ends with "-ate."
- 2. When all the H ions are removed from the "ous" acid, the anion's name ends with "-ite."
- 3. The names of anions in which one or more but not all the hydrogen ions have been removed must indicate the number of H ions present. For example:
 - H₂PO₄⁻ dihydrogen phosphate
 - HPO₄ ²⁻ hydrogen phosphate
 - PO₄³⁻ phosphate

TABLE 2.6 Names of Oxoacids and Oxoanions That Contain Chlorine

Acid	Anion
HClO ₄ (perchloric acid)	ClO_4^- (perchlorate)
HClO ₃ (chloric acid)	ClO_3^- (chlorate)
HClO ₂ (chlorous acid)	ClO_2^- (chlorite)
HClO (hypochlorous acid)	ClO ⁻ (hypochlorite)

A *base* can be defined as a substance that yields hydroxide ions (OH) when dissolved in water.

NaOH	sodium hydroxide
КОН	potassium hydroxide
Ba(OH) ₂	barium hydroxide

Hydrates are compounds that have a specific number of water molecules attached to them.

$BaCl_2 \bullet 2H_2O$	barium chloride dihydrate
LiCl•H ₂ O	lithium chloride monohydrate
MgSO ₄ •7H ₂ O	magnesium sulfate heptahydrate
$Sr(NO_3)_2 \bullet 4H_2O$	strontium nitrate tetrahydrate
$CuSO_4 \bullet 5H_2O \rightarrow$	$\leftarrow CuSO_4$

TABLE 2.7 Common and Systematic Names of Some Compounds

Formula	Common Name	Systematic Name
H ₂ O	Water	Dihydrogen monoxide
NH ₃	Ammonia	Trihydrogen nitride
CO ₂	Dry ice	Solid carbon dioxide
NaCl	Table salt	Sodium chloride
N_2O	Laughing gas	Dinitrogen monoxide
CaCO ₃	Marble, chalk, limestone	Calcium carbonate
CaO	Quicklime	Calcium oxide
Ca(OH) ₂	Slaked lime	Calcium hydroxide
NaHCO ₃	Baking soda	Sodium hydrogen carbonate
$Na_2CO_3 \cdot 10H_2O$	Washing soda	Sodium carbonate decahydrate
$MgSO_4 \cdot 7H_2O$	Epsom salt	Magnesium sulfate heptahydrate
Mg(OH) ₂	Milk of magnesia	Magnesium hydroxide
$CaSO_4 \cdot 2H_2O$	Gypsum	Calcium sulfate dihydrate

Lecture References :

1. Raymond Chang, General Chemistry, McGraw Hill 9th ed., 2007.

 Essentials of General Chemistry By D.D.Ebbing, S.D.Gammon,andR.O.Ragsdale,2003 , Houghton Mifflin Company,New York.

